Examen de Matemáticas II de Cantabria (selectividad de 2002)

Comunidad Autónoma | Cantabria |
---|---|
Asignatura | Matemáticas II |
Convocatoria | Extraordinaria de 2002 |
Fase | General Específica |
Temas mencionados new_releases
Número real
En matemáticas, el conjunto de los números reales (denotado por) incluye tanto a los números racionales (positivos, negativos y el cero) como a los números irracionales; y en otro enfoque, trascendentes y algebraicos. Los irracionales y los trascendentes (1970) no se pueden expresar mediante una fracción de dos enteros con denominador no nulo; tienen infinitas cifras decimales aperiódicas, tales como: √5, el número real 2, cuya trascendencia fue enunciada por Euler en el siglo XVIII.
Fuente: wikipedia.orgTriángulo rectángulo
En geometría euclídea plana se denomina triángulo rectángulo a cualquier triángulo con un ángulo recto, es decir, un ángulo de 90 grados. Las razones entre las longitudes de los lados de un triángulo rectángulo es un enfoque de la trigonometría plana. En particular, en un triángulo rectángulo, se cumple el llamado teorema de Pitágoras ya conocido por los babilonios.
Fuente: wikipedia.org